On generalisation of the Backlund-Calogero transformations for integrable equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 21 L743
(http://iopscience.iop.org/0305-4470/21/15/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 05:56

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On generalisation of the Bäcklund-Calogero transformations for integrable equations

B G Konopelchenko
Institute of Nuclear Physics, USSR Academy of Sciences, Novosibirsk-90, 630090, USSR

Received 18 April 1988

Abstract

It is shown that the consideration of dressing (gauge) transformations non-local on all spatial variables and spectral parameters allows one to extend the class of general Bäcklund-Calogero transformations for the Kadomtsev-Petviashvili equation.

A study of the recursion and group-theoretical properties of non-linear equations integrable by the inverse spectral transform method (see, e.g., [1-4]) is an important problem of the theory of non-linear evolutions (see, e.g., $[2,3,5]$). Recently an essential step has been made in the understanding of these properties for the integrable equations in $(1+2)$ dimensions. Namely, it was shown that the usual hierarchies of integrable equations in $(1+2)$ dimensions, their symmetries and Bäcklund-Calogero transformations are generated by a single bilocal recursion operator [6-13]. The bilocality on one of the space variables (X or Y) is an essential and common feature of these results. The bilocal approach is also applicable to integrable equations in ($1+1$) dimensions [8, 10-12].

The purpose of the present letter is to demonstrate the possibility of constructing Bäcklund-Calogero transformations (вст) which are wider than those constructed earlier in [5-12]. These wider вст are related to the dressing (or gauge) transformations which are non-local on all spatial variables and spectral parameters. These generalised BCT are calculated via a bilocal transformation on all spatial variables and on the spectral-parameter adjoint representation of a given spectral problem. These generalised вст seem to include also t, x, y-dependent symmetries which were considered in [7, 14-18].

We will consider here a well known Kadomtsev-Petviashvili (KP) equation ($\sigma^{2}= \pm 1$):

$$
\begin{equation*}
U_{t}(x, y, t)=U_{x x x}+6 U U_{x}+3 \sigma^{2} \partial_{x}^{-1} U_{y y} \tag{1}
\end{equation*}
$$

This KP equation (1) is integrable by the two-dimensional problem $[1,2]$

$$
\begin{equation*}
L_{x, y} \psi \stackrel{\text { def }}{=}\left(\sigma \partial_{y}+\partial_{x}^{2}+U(x, y, t)\right) \psi=0 . \tag{2}
\end{equation*}
$$

A change $\psi \rightarrow \hat{\psi}$ given by $\psi=\exp \left(\mathrm{i} \lambda x+\sigma^{-1} \lambda^{2} y\right) \hat{\psi}(x, y, \lambda)(\lambda \in \mathbb{C})$ converts (2) into the spectral problem

$$
\begin{equation*}
\left(L_{x, y}+2 \mathrm{i} \lambda \partial_{x}\right) \hat{\psi}(x, y, \lambda)=0 \tag{3}
\end{equation*}
$$

The spectral problem (3) has appeared in the framework of the $\bar{\alpha}$ approach to the KP equation (see, e.g., [19]). This spectral problem is our starting point too.

Let us consider the completely non-local gauge (dressing) transformations

$$
\begin{align*}
& \hat{\psi}(x, y, \lambda) \rightarrow \hat{\psi}^{\prime}\left(x^{\prime}, y^{\prime}, \lambda^{\prime}\right) \\
&=\int \mathrm{d} \lambda \mathrm{~d} x \mathrm{~d} y G\left(x^{\prime}, x ; y^{\prime}, y ; \lambda^{\prime}, \lambda\right) \hat{\psi}(x, y, \lambda) \tag{4}
\end{align*}
$$

for the problem (3) and assume that
$\left(L_{x^{\prime}, y^{\prime}}^{\prime}+2 \mathrm{i} \lambda^{\prime} \partial_{x^{\prime}}\right) \hat{\psi}\left(x^{\prime}, y^{\prime}, \lambda^{\prime}\right) \equiv\left(\sigma \partial_{y^{\prime}}+\partial_{x^{\prime}}^{2}+U^{\prime}\left(x^{\prime}, y^{\prime}\right)+2 \mathrm{i} \lambda^{\prime} \partial_{x^{\prime}}\right) \hat{\psi}^{\prime}=0$.
As a result G obeys the equation

$$
\begin{equation*}
\frac{1}{2} \mathrm{i}\left(L_{x^{\prime}, y^{\prime}}^{\prime}-L_{x, y}^{+}\right) G\left(x^{\prime}, x ; y^{\prime}, y ; \lambda^{\prime}, \lambda\right)=\left(\lambda^{\prime} \partial_{x^{\prime}}+\lambda \partial_{x}\right) G \tag{6}
\end{equation*}
$$

where $L^{+}=-\sigma \partial_{y}+\partial_{x}^{2}+U(x, y)$ is the operator formally adjoint to L. Note that the bilocal quantity

$$
\phi\left(x^{\prime}, x ; y^{\prime}, y ; \lambda^{\prime}, \lambda\right) \stackrel{\text { def }}{=} \hat{\psi}^{\prime}\left(x^{\prime}, y^{\prime}, \lambda^{\prime}\right) \check{\psi}(x, y, \lambda)
$$

where ($L_{x, y}^{+}-2 \mathrm{i} \lambda \partial_{x}$) $\check{\psi}=0$ obeys equation (6). Equation (6) is the bilocal on X, Y and λ adjoint representation of the problem (3).

An application of the completely local gauge transformations (i.e. $G=$ $\left.\delta\left(\lambda^{\prime}-\lambda\right) \delta\left(y^{\prime}-y\right) \delta\left(x^{\prime}-x\right) \tilde{G}\right)$ for the construction of the вст in $(1+1)$ dimensions has been proposed in [20,21]. The transformations (4) local on λ and bilocal either on $X\left(G=\delta\left(\lambda^{\prime}-\lambda\right) \delta\left(y^{\prime}-y\right) \tilde{G}\right)$ or $Y\left(G=\delta\left(\lambda^{\prime}-\lambda\right) \delta\left(x^{\prime}-x\right) \tilde{G}\right)$ have been used in [79,12]. Infinitesimal dressing transformations (4) non-local on λ and local on X and $\boldsymbol{Y}\left(G=\delta\left(x^{\prime}-x\right) \delta\left(y^{\prime}-y\right) \tilde{G}\right)$ have beeen considered in [16].

Note that equation (6) is equivalent to

$$
\begin{equation*}
\frac{1}{2}\left(L_{x^{\prime}, y^{\prime}}^{\prime}-L_{x, y}^{+}\right) G=\left(\lambda_{+} \partial_{+}+\lambda_{-} \partial_{-}\right) G \tag{7}
\end{equation*}
$$

where $\lambda_{ \pm} \stackrel{\text { def }}{=} \frac{1}{2}\left(\lambda^{\prime} \pm \lambda\right)$ and $\partial_{ \pm} \stackrel{\text { def }}{=} \partial_{x^{\prime}} \pm \partial_{x}$.
The possibility of constructing different non-linear transformations associated with the KP equation (1), in particular the generalised $\mathbf{B C T}$, is connected with a choice of different ansätze for G.

Here we will consider some of the simplest cases. Let us choose G as

$$
G=\delta\left(\lambda^{\prime}-\lambda\right) \sum_{n=0}^{N} \lambda^{n} \varphi_{n}\left(x^{\prime}, x ; y^{\prime}, y\right)
$$

where $\varphi_{0}=\delta\left(x^{\prime}-x\right) \delta\left(y^{\prime}-y\right) \hat{\varphi}_{0}$. Substituting such a G into (7) one obtains

$$
\begin{align*}
& \Delta\left(\partial_{+} \Lambda_{+} \varphi_{0}\right)=0 \tag{8a}\\
& \partial_{+} \varphi_{N}=0 \quad \Lambda_{+} \varphi_{n}=\varphi_{n-1} \quad n=1, \ldots, N \tag{8b}
\end{align*}
$$

where Δ is a projection operation onto the diagonal $X^{\prime}=X, Y^{\prime}=Y$:

$$
\left.\Delta Q\left(X^{\prime}, X, Y^{\prime}, Y\right) \stackrel{\text { def }}{=} Q\right|_{x^{\prime}=x, y^{\prime}=y}
$$

and the operator Λ_{+}is

$$
\begin{align*}
\Lambda_{+}=\frac{1}{2} \partial_{+}^{-1} \mathbf{i}(& \left.L_{x^{\prime}, y^{\prime}}^{\prime}-L_{x, y}^{+}\right) \\
& =\frac{1}{2} \mathbf{i}\left(\partial_{x^{\prime}}+\partial_{x}\right)^{-1}\left[\sigma\left(\partial_{y^{\prime}}+\partial_{y}\right)+\partial_{x^{\prime}}^{2}-\partial_{x}^{2}+U^{\prime}\left(x^{\prime}, y^{\prime}\right)-U(x, y)\right] \tag{9}
\end{align*}
$$

The relations ($8 b$) give $\varphi_{N}=f_{N}\left(x^{\prime}-x, y^{\prime}, y\right)$ where f_{N} is an arbitrary function and $\varphi_{0}=\Lambda_{+}^{N} f_{N}$. Substituting this expression for φ_{0} into ($8 a$) we finally obtain

$$
\begin{equation*}
\Delta\left(\partial_{+} \Lambda_{+}^{N+1} f_{N}\right)=0 \tag{10}
\end{equation*}
$$

The consideration of the infinitesimal gauge transformations (4) ($\psi^{\prime}=\psi+\delta \psi, \delta \psi=\varepsilon \psi_{t}$) with the same ansatz for G gives the hierarchy of the integrable equations

$$
\begin{equation*}
U_{t}(x, y, t)=\Delta\left(\partial_{+} \Lambda_{+}^{N+1} \cdot 1\right) \tag{11}
\end{equation*}
$$

and their symmetry transformations

$$
\begin{equation*}
\delta U=\Delta\left(\partial_{+} \Lambda_{+}^{N+1} \hat{f}_{N}\right) \tag{12}
\end{equation*}
$$

In formulae (11) and (12) one must put $U^{\prime} \equiv U\left(x^{\prime}, y^{\prime}, t\right)$ in the operator Λ_{+}.
Note that $\Delta=\Delta_{x} \Delta_{y}$ where Δ_{x} and Δ_{y} are projection operations onto the diagonals $X^{\prime}=X$ and $Y^{\prime}=Y$ respectively:

$$
\Delta_{x} Q\left(x^{\prime}, x ; y^{\prime}, y\right)=\left.Q\right|_{x^{\prime}=x} \quad \Delta_{y} Q\left(x^{\prime}, x ; y^{\prime}, y\right)=\left.Q\right|_{y^{\prime}=y}
$$

The operator Λ_{+}contains the derivatives $\partial_{y^{\prime}}$ and ∂_{y} only in the combination $\partial_{y^{\prime}}+\partial_{y}$ and hence it admits a direct projection onto the diagonal $y^{\prime}=y$. As a result the вСт (10) and equations (11) can be rewritten in the form

$$
\begin{equation*}
\Delta_{x}\left(\partial_{+} \Lambda_{x^{\prime}, x}^{N+1} f_{N}\right)=0 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{t}(x, y, t)=\Delta_{x}\left(\partial_{+} \Lambda_{x^{\prime}, x}^{N+1} \cdot 1\right) \tag{14}
\end{equation*}
$$

where $\Lambda_{x^{\prime}, x} \stackrel{\text { def }}{=} \Delta_{y} \Lambda_{+}$is the operator bilocal on X :

$$
\Lambda_{x^{\prime}, x}=\left(\partial_{x^{\prime}}+\partial_{x}\right)^{-1}\left(\sigma \partial_{y}+\partial_{x^{\prime}}^{2}-\partial_{x}^{2}+U^{\prime}\left(x^{\prime}, y\right)-U(x, y)\right)
$$

The operator Λ_{+}does not admit a direct projection onto $X^{\prime}=X$. But one can easily check that an action of the operator $\Delta_{x} \Lambda_{+}^{2}$ on the vector fields of the form $\Lambda_{+}^{m} 1$ is equivalent to the action of the bilocal on the Y operator

$$
\begin{aligned}
L_{y^{\prime}, y}= & -\frac{1}{4}\left\{\partial_{x}^{2}+\right. \\
& 2 \sigma\left(\partial_{y^{\prime}}-\partial_{y}\right)+U^{\prime}+U+\partial_{x}^{-1}\left(U^{\prime}+U\right) \partial_{x} \\
& \left.+\partial_{x}^{-1}\left[\sigma\left(\partial_{y^{\prime}}+\partial_{y}\right)+U^{\prime}-U\right] \partial_{x}^{-1}\left[\sigma\left(\partial_{y^{\prime}}+\partial_{y}\right)+U^{\prime}-U\right]\right\}
\end{aligned}
$$

where $U^{\prime} \equiv U^{\prime}\left(x, y^{\prime}\right)$. Correspondingly the $\operatorname{BCT}(10)$ and equations (11) can be represented in the forms ($N=2 M+1$):

$$
\begin{equation*}
\Delta_{y}\left(\partial_{x} \Lambda_{y^{\prime}, y}^{M} f_{M}\left(y^{\prime}, y\right)\right)=0 \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{t}(x, y, t)=\Delta_{y}\left(\partial_{x} \Lambda_{y^{\prime}, y}^{M} \cdot 1\right) . \tag{16}
\end{equation*}
$$

The operator $\Lambda_{x^{\prime}, x}$ (up to the factor $\frac{1}{2} \mathrm{i}$), the general вCT (13), the hierarchy (14) and their symmetries coincide with the bilocal on the X recursion operator, the KP hierarchy and its symmetries constructed in [8,12] by another approach. The operator $\Lambda_{y^{\prime}, y}$ bilocal on Y, the вCT (15), equations (16) and their symmetries coincide with those constructed in [6, 7, 9-11].

Now let us choose G in the form

$$
G=\delta\left(\lambda^{\prime}+\lambda\right) \sum_{m=0}^{M} \lambda_{-}^{m} \chi_{m}\left(x^{\prime}, x, y^{\prime}, y\right)
$$

Using this ansatz for G we obtain from (7) the following вст:

$$
\begin{equation*}
\Delta\left(\partial_{-} \Lambda_{-}^{M+1} \xi_{M}\right)=0 \tag{17}
\end{equation*}
$$

where $\xi_{M}=\xi_{M}\left(x^{\prime}+x, y^{\prime}, y\right)$ is an arbitrary function and

$$
\begin{align*}
\Lambda_{-} \equiv \frac{1}{2} \partial_{-}^{-1} \mathbf{i}(& \left.L_{x^{\prime}, y^{\prime}}^{\prime}-L_{x, y}^{+}\right) \\
& =\frac{1}{2} \mathbf{i}\left(\partial_{x^{\prime}}-\partial_{x}\right)^{-1}\left[\sigma\left(\partial_{y^{\prime}}+\partial_{y}\right)+\partial_{x^{\prime}}^{2}-\partial_{x}^{2}+U^{\prime}\left(x^{\prime}, y^{\prime}\right)-U(x, y)\right] . \tag{18}
\end{align*}
$$

The corresponding infinitesimal symmetry transformations are

$$
\delta U=\Delta\left(\partial_{-} \Lambda^{M+1} \xi_{M}\left(x^{\prime}+x, y^{\prime}, y\right)\right)
$$

It is easy to see that $\partial_{+} \Lambda_{+}=\partial_{-} \Lambda_{-}=\frac{1}{2} \mathrm{i}\left(L_{x^{\prime}, y^{\prime}}^{\prime}-L_{x, y}^{+}\right)$. So in fact the operator $L_{x^{\prime}, y^{\prime}}^{\prime}-L_{x, y}^{+}$ plays a central role in our approach.

We emphasise also that

$$
\Lambda_{+}\left(x^{\prime}, x, y^{\prime}, y\right) \phi(\lambda, \lambda)=\lambda \phi\left(x^{\prime}, x, y^{\prime}, y ; \lambda, \lambda\right)
$$

and

$$
\Lambda_{-}\left(x^{\prime}, x, y^{\prime}, y\right) \phi(\lambda,-\lambda)=\lambda \phi\left(x^{\prime}, x, y^{\prime}, y ; \lambda,-\lambda\right)
$$

where $\phi\left(x^{\prime}, x, y^{\prime}, y ; \lambda^{\prime}, \lambda\right) \stackrel{\text { def }}{=} \hat{\psi}^{\prime}\left(x^{\prime}, y^{\prime}, \lambda^{\prime}\right) \check{\psi}(x, y, \lambda)$.
Transformations and formulae (10)-(18) can easily be derived also for the ansätze $G=\delta\left(\lambda^{\prime}\right) \tilde{G}$ and $G=\delta(\lambda) \tilde{G}$. The corresponding results are given by (8)-(18) with an obvious change $\partial_{+} \rightarrow \partial_{x^{\prime}}, \partial_{-} \rightarrow \partial_{x}$. In this case $f_{N}=f_{N}\left(x, y^{\prime}, y\right)$ and $\xi_{M}=\xi_{M}\left(x^{\prime}, y^{\prime}, y\right)$.

At last, for the ansatz

$$
G=\delta\left(\lambda^{\prime 2}-\lambda^{2}-4\right) \sum_{n=0}^{N} \lambda_{+}^{n} \varphi_{n}\left(x^{\prime}, x, y^{\prime}, y ; \lambda_{+}\right)
$$

relation (7) gives

$$
\begin{equation*}
\partial_{+} \varphi_{N}=0 \quad \frac{1}{2} \mathrm{i}\left(L_{x^{\prime}, y^{\prime}}^{\prime}-L_{x, y}^{+}\right) \varphi_{0}=\partial_{-} \varphi_{1} \quad \partial_{-} \varphi_{0}=0 \tag{19}
\end{equation*}
$$

and

$$
\frac{1}{2} \mathrm{i}\left(L_{x^{\prime}, y^{\prime}}^{\prime}-L_{x, y}^{+}\right) \varphi_{n}=\partial_{+} \varphi_{n-1}+\partial_{-} \varphi_{n+1} \quad n=1, \ldots, N-1 .
$$

As a result the generalised BCT are of the form

$$
\Delta\left(P_{N}\left(\Lambda_{-}, \partial_{1}^{-1} \partial_{+}\right) \varphi_{0}\left(x^{\prime}+x, y^{\prime}, y\right)\right)=0
$$

where P_{N} is a polynomial in Λ_{-}and $\partial_{-}^{-1} \partial_{+}$, the form of which is determined by recurrence relation (19).

In a similar manner one can consider also the general case

$$
G=\delta\left(f\left(\lambda^{\prime}, \lambda\right)\right) G\left(x^{\prime}, x, y^{\prime}, y, \lambda\right)
$$

where $f\left(\lambda^{\prime}, \lambda\right)$ is some function. For example, at $f=\lambda^{\prime}-\lambda^{2}$ and $G=\Sigma_{n=0}^{N} \lambda^{n} \varphi_{n}$ the generalised BCT are given by the relation

$$
\Delta\left(\partial_{x} P_{N}\left(\Lambda, \partial_{x}^{-1} \partial_{x^{\prime}}\right) \cdot 1\right)=0
$$

where the polynomial P_{N} is determined by the recurrence relation $L \varphi_{n}=\partial_{x^{\prime}} \varphi_{n-2}+\partial_{x} \varphi_{n-1}$ ($\varphi_{N}=\varphi_{N-1}=1$) and the operator $L=\frac{1}{2} \partial_{x}^{-1} \mathrm{i}\left(L_{x^{\prime}, y^{\prime}}^{\prime}-L_{x, y}^{+}\right)$.

In the one-dimensional limit, $\partial_{y} \rightarrow 0, \partial_{y^{\prime}} \rightarrow 0$, all these formulae give the corresponding generalised transformations and symmetries for the Korteweg-de Vries equation.

One can obtain similar results for the matrix problem $\left(\partial_{x}+A \partial_{y}+P(x, y, t)\right) \psi=0$ and the problem $\left(\partial_{x}^{2}-\sigma^{2} \partial_{y}^{2}+\varphi(x, y)\left(\partial_{x}+\sigma \partial_{y}\right)+U(x, y)\right) \psi=0$ too.

I am grateful to F Magri, A Orlov and P Santini for useful discussions.

References

[1] Zakharov V E, Manakov S V, Novikov S P and Pitaevsky L P 1980 Soliton Theory (Moscow: Nauka)
[2] Ablowitz M Y and Segur H 1981 Solitons and Inverse Scattering Transform (Philadelphia: SIAM)
[3] Calogero F and Degasperis A 1982 Spectral Transform and Solitons vol 1 (Amsterdam: North-Holland)
[4] Newell A C 1985 Solitons in Mathematics and Physics (Philadelphia: SIAM)
[5] Konopelchenko B G 1987 Nonlinear Integrable Equations (Lecture Notes in Physics 270) (Berlin: Springer)
[6] Fokas A S and Santini P M 1986 Stud. Appl. Math. 75179
[7] Santini P M and Fokas A S 1986 Preprints Clarkson University INS 65, 67
[8] Fokas A S and Santini P M 1987 Preprint Clarkson University INS 79
[9] Boiti M, Leon Y Y P and Pempinelli F 1987 Preprint Montpellier PM87/03
[10] Konopelchenko B G 1987 Phys. Lett. 123A 451
[11] Konopelchenko B G 1987 Preprint Institute of Nuclear Physics, Novosibirsk 87-86
[12] Boiti M, Leon Y Y P, Martina L and Pempinelli F 1987 Preprint Montpellier PM/87-25; 1987 Phys. Lett. 123A 340
[13] Magri F, Morosi C and Tondo G 1987 Preprint Milano University
[14] Chen H H and Lee Y C 1983 Physica 9D 439; 1987 Physica 26D 171
[15] Schwarz F 1982 J. Phys. Soc. Japan 512387
[16] Orlov A Yu and Schulman E I 1983 Preprint IA and E 277; 1984 Preprint IA and E 217; 1985 Teor. Math. Fis. 64 323; 1986 Lett. Math. Phys. 12171
[17] Fuchssteiner B 1985 Lecture Notes in Physics vol 216 (Berlin: Springer) p 305
[18] David D, Kamran N, Levi D and Winternitz P 1985 Phys. Rev. Lett. 552111
[19] Ablowitz M Y and Fokas B S 1982 The Inverse Scattering Transform for Multidimensional (2+1) Problems (Lecture Notes in Physics 189) (Berlin: Springer) p 137
Ablowitz M Y and Nachman A I 1986 Physica 18D 223
[20] Boiti M and Tu G Z 1982 Nuovo Cimento B 71253
[21] Levi D, Ragnisco O and Śym A 1982 Lett. Nuovo Cimento 33401

